Reaction-Diffusion Equations with Randomly Perturbed Boundary Conditions
نویسندگان
چکیده
منابع مشابه
Reaction-diffusion equations with nonlinear boundary conditions in narrow domains
Second initial boundary problem in narrow domains of width ǫ ≪ 1 for linear second order differential equations with nonlinear boundary conditions is considered in this paper. Using probabilistic methods we show that the solution of such a problem converges as ǫ ↓ 0 to the solution of a standard reaction-diffusion equation in a domain of reduced dimension. This reduction allows to obtain some r...
متن کاملReaction-diffusion waves with nonlinear boundary conditions
A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method. 1. Formulation of the problem. Reaction-diffusion problems with nonlinear boundary conditions arise in various applications. In physiology, such problems describe in particular development of atheroscle...
متن کاملDiffusion of Power in Randomly Perturbed Hamiltonian Partial Differential Equations
Abstract We study the evolution of the energy (mode-power) distribution for a class of randomly perturbed Hamiltonian partial differential equations and derive master equations for the dynamics of the expected power in the discrete modes. In the case where the unperturbed dynamics has only discrete frequencies (finitely or infinitely many) the mode-power distribution is governed by an equation ...
متن کاملExistence and asymptotic stability of a periodic solution with boundary layers of reaction-diffusion equations with singularly perturbed Neumann boundary conditions
We consider singularly perturbed reaction-diffusion equations with singularly perturbed Neumann boundary conditions. We establish the existence of a time-periodic solution u(x, t, ε) with boundary layers and derive conditions for their asymptotic stability The boundary layer part of u(x, t, ε) is of order one, which distinguishes our case from the case of regularly perturbed Neumann boundary co...
متن کاملAbsorbing boundary conditions for diffusion equations
Résumé. Nous introduisons une famille de conditions aux limites absorbantes pour des équations paraboliques à coefficients variables et une frontière quelconque. Elle repose sur l’identification géométrique de l’application Dirichlet à Neumann, et une approximation rationelle de z 1/2 dans le plan complexe. Les conditions aux limites obtenues sont stables, précises, et faciles à mettre en œuvre.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1992
ISSN: 0091-1798
DOI: 10.1214/aop/1176989813